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A B S T R A C T   

Satellite-derived aerosol optical depth (AOD) is popularly used to infer ground-level PM2.5 concentration due to 
its wide coverage. The fact that aerosols are largely confined in the atmospheric boundary layer makes boundary 
layer height (BLH) an important scale factor for AOD-based PM2.5 estimates. Our recent ground-based lidar 
observations, nevertheless, indicate that aerosol particles are heterogeneously mixed within the boundary layer, 
and even frequently reside above BLH, forming the residual layers (RL)-like pattern. To better sort out the un-
derlying mechanism behind the above-mentioned phenomenon and the impact on hourly ground-level PM2.5 
estimates from satellite-based AOD, we firstly propose a novel notion of haze layer height (HLH), which is 
calculated from Micro-Pulse Lidar (MPL) profile. Combined analysis of 3.5-year ground-based lidar profiles, CE- 
318 AOD, and PM2.5 measurements show that the coefficient of determination (R2) between PM2.5 and AOD 
normalized with HLH increases from 0.49 to 0.61 for 90% of the dataset. Second, we applied HLH to an Auto- 
encoder-based Deep Residual Network (ADRN) and tested the effect on satellite AOD-based PM2.5 estimation 
within a 300 km range surrounding the MPL station. With the aid of the AOD imputation technique, a similar 
improvement of using HLH instead is found on the regional scale PM2.5 estimation, which can be demonstrated 
by the comparison with air quality measurements and other machine learning models. The results show that 
using ADRN with HLH achieves the highest performance (mean R2 = 0.87, RMSE = 10.12 μg/m3) among 4 
machine learning models. This new approach, largely combining active and passive remote sensing data through 
artificial neural networks (CAPTA), shows improved accuracy and coverage of hourly PM2.5 estimation with 
aerosol vertical information and AOD calculation under clouds. In addition, further analysis showed that the 
average difference between morning and daily PM2.5 concentration could equate to an accuracy of 0.19–2.57 yrs. 
in terms of life expectancy, indicating that our new approach to the determination of PM2.5 from space sheds new 
insight into the assessment of the aerosol impact on public health.   
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1. Introduction 

Aerosols or airborne particulate matters (PMs) near the ground 
surface, especially for fine particles with an aerodynamic diameter <2.5 
μm (PM2.5), are known to significantly affect the weather system and 
climate change on the Earth and bring adverse effects on public health 
(Bellouin et al., 2020; Liang et al., 2020). Led by the World Air Quality 
Index project, the air quality index (AQI) is measured from >30,000 
stations in 2000 major cities around the globe (https://aqicn.org), but 
the coverage is sparse in non-city areas. A variety of techniques have 
been developed to provide practical estimates of PM2.5 that supplement 
the insufficient in situ observations. Aerosol optical depth (AOD), a 
metric used to indicate aerosol loading in the vertical column, has been 
found to be able to be empirically converted into mass concentration at 
ground level. In recent decades, advanced space-borne sensors provide 
AOD measurements with broad spatial coverage as well as high spatial 
resolution, making it a widely used source in the AOD-PM2.5 conversion 
(Hu et al., 2014; Lin et al., 2015; Wu et al., 2016; Zhang et al., 2018). 

However, the inability of passive sensors to measure vertical profiles 
leads to a major difficulty in PM2.5 estimation. Since the measured AOD 
is an optical column property lacking information about vertical distri-
bution, simply converting column AOD to surface PM2.5 might lead to 
significant errors (Lewis et al., 2010). A scaling parameter has to be 
assumed, typically referred to as the mixing layer height (MLH), which 
ideally equals the boundary layer height (BLH) (Emeis et al., 2008). The 
boundary layer is the lowest portion of the atmosphere where the ex-
change of mass, heat, and momentum mainly occur, making aerosol 
particles well-mixed inside the layer, below the free atmosphere (Li 
et al., 2018). In other words, BLH indicates the volume for the dispersion 
of aerosols concentrated near the surface in the vertical direction (Pal 
et al., 2015). BLH is a crucial factor for studies estimating surface PM2.5 
concentration through either empirical or semi-empirical statistical 
methods (Tian and Chen, 2010; Sorek-Hamer et al., 2013; Song et al., 
2014), chemical transport models (Xing et al., 2015; Geng et al., 2017; 
van Donkelaar et al., 2019), or machine learning approaches (Huang 

et al., 2018, Wei et al., 2019, Li et al., 2020b, Li, 2020a, 2020b). 
Lidar is an active remote sensing technique that measures the in-

tensity of backscattered light as a function of range; ground-based MPL 
has been widely used for profiling the vertical structure of clouds and 
aerosols, forming networks that provide long-term observations at 
multiple sites around the globe (Berkoff, Welton et al., 2004; Huang 
et al., 2012; Cordoba-Jabonero et al., 2018). In addition, new lidar 
techniques have continued to be developed with more advanced systems 
or algorithms (Shen et al., 2020; Xiao et al., 2020; Wang et al., 2022). 
Lidar-based researches on the atmospheric vertical structure indicate 
that BLH is not always ideal for the scaling parameter (Chu et al., 2015; 
Reid et al., 2017; Zhao et al., 2018). For instance, when the daytime 
convective boundary layer (CBL) transitions to a shallow nocturnal 
boundary layer (NBL) at sunset, a significant amount of aerosols are 
frequently observed above BLH as a residual layer (RL) (Geiss et al., 
2017). In other words, aerosols are not always confined in the boundary 
layer, nor are they always well-mixed throughout this layer. 

To address this issue, a few prior studies have proposed a variety of 
correction methods. Chu et al. (2013) and their follow-up work (Chu 
et al., 2015) took the aerosols above BLH into account by calculating 
haze layer height (HLH), which is defined as the sum of BLH and an 
additional scale height, and achieved improvements in estimated PM2.5 
concentration. Yet, due to the scarcity of coincident lidar observations 
and satellite measurements, the potential of improving AOD-PM2.5 
estimation using lidar profiles is rarely tested on a long-term basis. The 
inability of space-borne imagers such as MODerate resolution Imaging 
Spectroradiometer (MODIS) to resolve AOD when clouds are present 
adds to the difficulty of comparison (Levy et al., 2013). Despite their 
wide swaths, the effective AOD measurements are severely limited by 
cloud cover. In addition, related studies suggest relative humidity (RH), 
wind speed, and surface temperature must be considered in the AOD- 
PM2.5 conversion (Song et al., 2014; Li et al., 2017). 

New approaches using artificial intelligence (machine and deep 
learning) provides possible ways to solve complicated problems 
regarding aerosols, including both the missing AOD observations and 

Fig. 1. Location of 192 AQI stations (a) and key instruments at MPL station used in this work (b-c). The red circle in panel (a) marks the boundary of the study area. 
The MPL in panel (b) and CE-318 in panel (c) are located in the same building. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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the complicated non-linear relationship in the AOD-PM2.5 conversion 
(Sun et al., 2019; Wang et al., 2019; Chen et al., 2020; Yan et al., 2020; 
Liu et al., 2021). Zang et al. (2019) used a generalized regression neural 
network model for estimating PM mass; in addition, it proved that the 
quality of AOD and the robustness of the interpolation algorithm affect 
the model accuracy. Wei et al. (2019) developed a space-time random 
forest (STRF) model to estimate 1 km resolution PM2.5 with considerable 
accuracy (R2 = 0.85, RMSE = 15.57 μg/m3) in China from the multi- 
angle implementation of atmospheric correction (MAIAC) AOD filled 
by a linear regression data integration approach; and then continuously 
improved the PM2.5 estimates using newly developed space-time extra- 
trees (Wei et al., 2021a, 2021b) and space-time LightGBM (Wei et al., 
2021a, 2021b) models. Li trained an autoencoder-based deep residual 
network (ADRN) with MAIAC AOD and other input variables; the 
resulting weekly AOD over California showed a high R2 = 0.94 in the 
independent test (Li et al., 2020a). The author’s other work applied the 
same model to Beijing, China, and further estimated PM2.5, which also 
achieved high R2 (0.82–0.97) compared to actual measurements (Li, 
2020a, 2020b). Overall, deep learning models have successfully esti-
mated PM2.5 on a daily, weekly, or larger time scale. Still, few of them 
have included the variables regarding the observation of boundary layer 
variation and estimate PM2.5 concentration on an hourly basis. These 
studies, focusing on daily average or satellite overpass (typically around 
noon), may lack information pertaining to morning or afternoon peak 
hours that PM2.5 concentration can be several times higher than the 
relatively well-mixed period around noon (Hasheminassab et al., 2014). 
Combining with rush hours, high PM2.5 concentration in those periods 
can cause significant exposure, leading to negative impact on human 
health, and thus must be further studied (Gupta and Elumalai, 2019). 

This study proposes a method combining active and passive in-
struments through artificial neural networks (CAPTA). The traditional 
AOD/BLH-PM2.5 estimation is improved by introducing a new formula 
for parametrizing HLH from coincident ground-based lidar observa-
tions. HLH derived from the lidar profile accounts for mixing conditions 
inside the layer and residual components above the layer. The local 
pattern of boundary layer variation in the Yangtze River Delta (YRD) 
region of China is analyzed in detail from 2017 to 2020. The proposed 
normalization of AOD by HLH is first tested through correlation analysis 
using ground-based coincident measurements at the MPL station. 
Further analysis on the regional scale is performed using MAIAC AOD 

with imputation from the ADRN model. The accuracy of AOD imputa-
tion is examined through comparison with measurements from the CE- 
318 sun-photometer. The regional impact of AOD/HLH normalization 
is assessed for each AQI station and its distance to the lidar. Afterward, 
HLH is added to ADRN to produce hourly PM2.5 concentrations. The 
performance of trained ADRN is self-tested and compared with those 
derived from other machine learning models. 

2. Data and methods 

2.1. Study region and data sources 

This study focuses on a 300 km radius region covering most of the 
population centers in the YRD (Fig. 1). The center of the studied region is 
Hangzhou (120.10◦E, 30.14◦N), the largest city of Zhejiang province. 
This region is far from the natural dust source in northwestern China and 
generally has calm weather due to the topography of a vegetated plain 
with hilly areas. Aloft aerosol layers from long-range transport are rarely 
observed and therefore not considered in this study, though trans-
boundary transport might occur (Huang et al., 2020). 

From January 2017 to May 2020, AOD from both Terra and Aqua 
MODIS sensors and a CE-318 sun-photometer (Fig. 1c), PM2.5 concen-
trations from 192 AQI stations, managed by the Ministry of Ecology and 
Environment of China (Fig. 1a), and atmospheric profiles from an MPL 
(Fig. 1b), as well as local meteorological data (such as RH and temper-
ature), were collected at hourly resolution. Local time (UTC +8) is used 
in the following context. Data coverage (Table S1) and pre-processing 
are detailed in the supplement. Fig. 2 shows the schematic diagram of 
the study. 

Since the MPL profile has a blind area (non-detectable range) from 
surface to 150 m, and model data indicate that BLH might be lower than 
that limit in early morning and evening hours, we focus on the mea-
surements made between 8:00 and 19:00. 

2.2. Boundary layer parameterization 

Theoretically, BLH is frequently considered to be equal to MLH if all 
aerosols are confined within this homogeneously mixed layer, but such 
assumptions could be easily violated when the boundary layer is not 
uniformly mixed, or when a residual layer is present (Schneider and 

Fig. 2. (a) schematic diagram of the study and (b) framework of the autoencoder-based deep residual neural network.  
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Eixmann, 2002; Boyouk et al., 2010; Chu et al., 2015) Therefore, we 
derive HLH from BLH indicated by lidar profile and corrected for devi-
ation from the ideal case. 

The BLH from the MPL profile is calculated using the gradient 
method, which has been demonstrated to work well on range-corrected 
lidar signals (Tsaknakis et al., 2011; Nakoudi et al., 2019). The principle 
of the gradient method is to find the steepest gradient from the back-
scattered light intensity profile, which happens at the transition between 
the boundary layer and the clean atmosphere above, where aerosol 
concentration sharply decreases. Technically, the BLH determined by 
the gradient method is at the center of the entrainment zone, where 
interference with the free troposphere has started. Note that in-
consistencies in the definition of the BLH exist among different models 
and algorithms, which could lead to disagreement in the results. Before 
the method is applied, the profiles are screened to remove cloud 
contamination indicated by strong scattering signals (>10 counts/μs) 
and gradient much larger than the typical conditions between the 
boundary layer and the free troposphere. 

Next, the correction coefficients are derived from the lidar profile. 
First, the degree of vertical mixing within the BLH (α) is defined as the 
ratio between the integral of lidar signal up to the retrieved BLH from 
MPL (MPLBLH) to that of the assumed well-mix condition: 

α =

∫ BLHMPL
0 P(z)dz
∫ BLHMPL

0 P0dz
(1)  

where P is the range-corrected signal, which has also been calibrated for 
overlap function, P0 is the signal at 150 m, the first value above the lidar 
blind area. This factor has not been considered in previous work by Chu 
et al. (2015), yet we think it is important to evaluate the mixing con-
dition inside the boundary layer. Here we assumed that aerosols are 
well-mixed in the blind area (where we do not have lidar signal) but can 
be non-uniform between 150 m and BLH. Second, the amount of re-
siduals above MPLBLH is compressed within the boundary layer; the 
factor β is defined as the ratio between the integral of lidar signal in the 
residual layer to that in the boundary layer: 

β =

∫ clear
BLHMPL

P(z)dz
∫ BLHMPL

0 P(z)dz
(2)  

where clear is the calculated baseline of the clean atmosphere above, 
defined by approaching (10% higher than) the minimum value of profile 
in the troposphere. 

Thus, HLH in this work can be calculated from the BLH and correc-
tion coefficients using the following equation: 

HLH = BLHMPL(α+ αβ) (3) 

Fig. 3(a) and 3(b) present a demonstration of diurnal boundary layer 
evolution with the calculated parameters. A non-uniformly mixed layer 
would have α <1 and large β, as shown in panel (c), resulting in HLH 
being reasonably higher than MPLBLH. A relatively well-mixed layer 
would have α close to 1 and small β, as shown in panel (d), resulting in 
an HLH resembling BLHMPL. 

2.3. Autoencoder-based deep residual network 

An ADRN is trained for AOD imputation and PM2.5 estimation with 
HLH. The ADRN serves two main purposes in this work. First, it conducts 
spatial-temporal imputation of the MAIAC AOD to fill the missing data 
caused by gaps between satellite overpasses and cloud contamination. 
Second, it uses the hourly AOD from the output, HLH, and other ancil-
lary information to predict the PM2.5 concentration. The framework is 
given in Fig. 2b, developed based on the python package for bagging 
deep residual neural networks (https://pypi.org/project/baggingrnet/). 
The package contributor has used this residual network for the gap- 
filling of MAIAC AOD and AOD-PM2.5 estimation, which achieved bet-
ter performance than a regular neural network (Li, 2020a, 2020b; Li 
et al., 2020a). Only essential features of the ADRN are reiterated briefly 
here, and more details are provided in the referenced work. 

The ADRN used in this work has a symmetrical structure from 
encoding layers, where complex and non-linear information from AOD 
and other input variables are recognized, to decoding layers, where the 
recognized patterns are used to reconstruct the original input data with 
the new features. It includes residual connection to provide shortcuts 

Fig. 3. Times-series of the BLH observed on 
November 1st, 2019. MPL measured range- 
corrected signal (a-b) at 532 nm represents 
changes in aerosol loading. BLHs determined 
by different techniques are presented (MPL 
in pink, NWP in red, calculated HLH in light 
pink). Hourly averaged profiles are marked 
in black lines. Profiles at 9:00 (c) and 14:00 
(d) local time are shown in detail, with 
correction coefficients α and β. (For inter-
pretation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   
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among the layers to improve the efficient back-propagation of errors, 
which reduces the saturation and degradation of accuracy with 
increased hidden layers (Srivastava et al., 2015). 

ADRN for AOD imputation contains AOD from the Modern-Era 
Retrospective Analysis for Research and Applications, version 2 
(MERRA-2) (Gelaro et al., 2017) and 13 other input variables, including 
temperature at 2 m above the surface, wind speed at 10 m above the 
surface, RH at 103 hPa above the surface, ground elevation, location, 
date, hour, and BLH. BLH from the numerical weather prediction (NWP) 

model (BLHmodel) is used here for spatial variation. The spatiotemporal 
imputation is on weekly basis; the weeks before and after are also used in 
an index (− 1,0,1), where 0 is the current week. 

ADRN for AOD-PM2.5 estimation contains 2 additional inputs: 
interpolated AOD and ozone. HLH is used instead of BLHmodel. Out of the 
total samples, 90% are used for training and 10% for testing. Bootstrap 
aggregation (bagging) is adopted to improve the accuracy and stability 
of the residual network by separately training multiple models using 
partial inputs and aggregating the results from each model to get the 

Fig. 4. Classification of MPL profiles and their frequency of occurrence. Panel (a-f) show 6 types of boundary layers, (a-d) are 4 major types classified by aerosol 
mixing condition, while (e-f) are 2 special types identified by mixing condition and ancillary information. The total number of profiles (N) and average PM2.5 are 
given for each type. For 4 major types, frequency of occurrence through the day is present in panel (g). 
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best outcome (Gonzalez et al., 2020). Ten models are trained, each using 
50% of the training data, and bagged for the final results. Besides vali-
dation based on the test dataset, we also compared the ADRN results 
with other machine learning models, including multilayer perceptron 
(MLP) feed-forward neural network (FFNN), support vector regression 
(SVR), and random forest (RF). Details of ADRN training and a brief 
introduction of each method are given in the supplement. 

3. Results 

The results and analysis are presented in four subsections. The first 
one summarizes the diurnal evolution of HLH and related variables 
inferred from the MPL profile. The second subsection analyzes the AOD- 
PM2.5 relationship after normalizing with BLH or HLH, respectively, 
based on measurements at the MPL station. The third one diagnoses the 
quality of AOD imputation through comparison with CE-318 observa-
tions and uses the imputed AOD for PM2.5 estimation on the regional 
scale with HLH adaption through ADRN. The last subsection discusses 
the improved performance of ADRN and other models with HLH. 

3.1. Measurements of the atmospheric boundary layer using MPL 

The retrieved boundary layer condition has a clear diurnal cycle, 
depending on weather, which suggests that correction for the non- 
uniform boundary layer is necessary in many cases. The background 
of local weather patterns in Hangzhou is present in the supplements. 

To examine the variation of boundary layer and its influence on the 
estimation of ground-level PM2.5 from space, we categorize a total of 
9523 profiles into 6 types, mainly based on the average gradient from 
surface to BLHMPL. As shown in Fig. 4a-d, Type I-IV profiles indicate 
transition from the nocturnal stable boundary layer to the daytime 
convective boundary layer or vice versa. The frequency of occurrence 
(FoO, Fig. 4g) shows that Type I occurs most frequently during 
8:00–10:00 (32.2%, 30.3%, and 22.0% of the total profiles, respec-
tively). Type II occurs most frequently at 10:00–11:00 after the peak of 
Type I, and at 18:00 (32.2%, 30.3%, and 22.0%, respectively). Type III 
occur later at 12:00–13:00 and 19:00 (33.3%, 32.0%, and 31.3%, 
respectively). Type IV, represents the typical convective mixed bound-
ary layer, which occurs most frequently from 14:00–16:00 (38.9%, 
40.2%, 37.7%). The 4 major types of profiles identified depict the 
variation of boundary layer structures during the daytime due to the 
cease and return of solar heating. As the nocturnal stable boundary layer 
is stirred by solar heating of the surface, the BLH rises and becomes more 
uniform due to the convection of warm air. At the same time, aerosol 
particles near the surface mix with the surrounding air and the aloft 
residual layer from the previous day. This is confirmed by the frequency 
of occurrence that the non-uniform boundary layer (Type I) occurs more 
frequently in the morning with a large surface PM2.5 concentration, 
while the well-mixed boundary layer (Type IV) occurs more frequently 
in the early afternoon with about a third of the average PM2.5 in the 
morning. 

From Type I to IV, the surface PM2.5 (from nearby station) decreases 

Fig. 5. (a) Time-series of ground-based AOD measured by CE-318 and collocated PM2.5 concentration from January 2017 to May 2020; (b) correlation between AOD 
and PM2.5 concentration, in blue circles; (c) correlation between AOD/BLH and RH corrected PM2.5 concentration, in purple circles; (d) correlation between AOD/ 
HLH and RH corrected PM2.5 concentration, in yellow circles. For (c-d), PM2.5 concentration is corrected for hygroscopic growth f(RH). Solid circles account for 90% 
of all measurements (empty circles) used to calculate the R2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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as BLHMPL increases, α approaches 1 in general, and β decreases signif-
icantly from 0.92 to 0.18 on average. These trends suggest that aerosol 
particles become well-mixed and confined within the boundary layer, 
resulting in low PM2.5 concentration at the surface. Type V and VI 
(Fig. 4e-f) occur on special days and thus are not included in the daily 
transition. Type V profiles are measured on clean days. The average 
PM2.5 concentration at the surface is low (<20 μg/m3) even though no 
convection is observed. Type VI is identified by very strong signals near- 
surface, contradicting its low PM2.5 concentration (23.2 ± 9.1 μg/m3). 
The intensity of the signal decreases sharply to a clean value below 0.5 
km. Combined with the extremely high environmental humidity (RH =
89.8%), we conclude that Type VI represents conditions that aerosols are 
scavenged due to ground fog. 

The analysis of MPL profiles confirms that BLH has a significant 
impact on surface PM2.5 concentration. Since the well-mixed (Type IV) 
or the relatively well-mixed (Type III) profiles only account for 55.2% of 
the total, correction for the non-uniform boundary layer is necessary for 
more than half of cases. 

3.2. Correlation analysis of AOD/HLH-PM2.5 at the MPL station 

Following the variation of boundary layer height throughout the day, 
we use ground-based measurements to validate that AOD-PM2.5 esti-
mation can be further improved by normalizing AOD with HLH (AOD/ 
HLH) over the traditional AOD/BLH normalization. Linear dependence 
is analyzed through the square of the Pearson correlation coefficient (R2) 
(Devore and Berk, 2012). 

Fig. 5 illustrates the overall correlation between AOD and PM2.5. 
Panel 4(a) presents the time-series variation of AOD and PM2.5 con-
centrations (plotted as weekly mean) from 2017 to 2020. There is no 
clear correlation observed between AOD and PM2.5 directly, because 
AOD shows little variation among different seasons (0.51–0.58), while 
PM2.5 concentration shows a clear maximum in winter (53.27 μg/m3) 
and minimum in summer (25.16 μg/m3). After normalizing with BLH 
(Fig. 5c) or HLH (Fig. 5d), 2673 sets of coincident measurements of 
ground-based AOD and PM2.5 concentration show weak to moderate 
correlations. 

For the full dataset, normalizing AOD with HLH increases the cor-
relation to R2 = 0.41 compared to R2 = 0.17 for normalizing with BLH. 
Since a small fraction of measurements with high AOD/PM2.5 ratios 
might be affected by rare cases of regional transport and other mea-
surement errors might occur, we remove 10% of total measurements 
with the highest or lowest AOD/PM2.5 ratio. For the remaining 90% of 
measurements, AOD/BLH has a moderate correlation with PM2.5 con-
centration (R2 = 0.49), which increased to a relatively high correlation 
of R2 = 0.61 if normalized with HLH. Both normalization methods of 
AOD yield better results than the unnormalized dataset, though the in-
crease with BLH is very limited. For this comparison, the effect of 

hygroscopic growth is considered when assessing the AOD-PM2.5 cor-
relation. The hygroscopic growth factor f(RH) is defined as: 

f (RH) =
1

(1-RH)
γ (4)  

where γ is the coefficient of growth. The γ is set to 0.35, adapted from a 
campaign conducted at locations with similar aerosol types (Chu et al., 
2015). 

The increase in correlation agreed with previous studies showing 
aerosol vertical distribution is a key factor in the relationship between 
AOD and PM2.5 (He et al., 2008; Boyouk et al., 2010). By taking into 
account aerosol mixing in the boundary layer and residual above, HLH 
calculated from the lidar profile helps correlate column AOD with sur-
face aerosol mass concentration. Some relatively poor results in the 
simple relationship between AOD and PM2.5 due to non-uniform dis-
tribution demonstrate significant improvements. Such results validate 
the potential of HLH for improving PM2.5 estimation, but further 
employment in the regional PM2.5 estimation requires sufficient AOD 
measurements in the studied area. In this study, regional AOD data are 
obtained through satellite measurements and ADRN-based imputation 
technique. 

3.3. Assessment of AOD imputation and regional AOD-PM2.5 estimation 

Following the correlation analysis of simultaneous measurements at 
the MPL station, MAIAC AOD with hourly imputation is used to test the 
validity of using HLH from a single lidar to improve the PM2.5 estimation 
in the study area. As stated, the imputation of AOD follows previous 
work using ADRN (Li, 2020a, 2020b; Li et al., 2020a). The imputed AOD 
is categorized into 3 levels: AODL1 is the actual observation; AODL2 is 
interpolated AOD when the proportion of missing AOD is <20%; AODL3 
is interpolated AOD when the proportion of missing data is >20%. Each 
level of results is validated against CE-318 measurements (Fig. 6). 

The comparison shows that the ADRN imputation results agree well 
with coincident measurements from ground-based CE-318 sun- 
photometer for AODL1 (Fig. 6a) and AODL2 (Fig. 6b). The segmented 
mean and standard deviation (std) of observed MAIAC AOD and inter-
polated results are given in Table S2. AODL1 data correlates strongly (R2 

= 0.86, RMSE = 0.10) with the ground-based AOD, and mean values 
always fall in the uncertainty of CE-318 measurements. AODL2 data also 
correlates well with ground-based AOD (R2 = 0.69, RMSE = 0.14), but 
tend to underestimate in high aerosol loading cases. Over the 3.5-yr 
study period, the observed MAIAC AOD (AODL1) accounts for 4.96% 
of spatial-temporal coverage, and the partly interpolated AODL2 ac-
counts for 8.3%. 

AODL3 is interpolated with a high proportion of missing values due to 
cloud cover; therefore, it is difficult to fill the gaps and consequently, 
AODL3 has a relatively wide span. We limited the overall coverage to 

Fig. 6. Validation of AOD imputation results against CE-318 measurements at 3 levels: (a) actual observed (AODL1), (b) interpolated when <20% satellite pixels were 
missing (AODL2) in the study region, and (c) interpolated when >20% pixels were missing (AODL3). The dotted gray lines mark the uncertainty of CE-318 mea-
surements. The dotted black lines in panel (c) indicate the margin of 80% of AODL3 used in the study. 
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80% by removing days subject to large errors. The remaining data show 
moderate correlation (R2 = 0.46, RMSE = 0.19) with ground-based 
AOD. 

3.4. Improvement in regional PM2.5 estimation using HLH 

Using interpolated AOD at all three levels, ADRN models for AOD/ 

HLH-PM2.5 estimation are trained with different distances (k) to the MPL 
station, and the performance is first examined through an independent 
test using 10% of samples. Fig. 7 presents the scatter plots with point 
density of observed PM2.5 concentration and estimated values at k = 50, 
100, 200, and 300 km, respectively. The test R2 of trained models de-
creases only slightly as the range increases; models using data within 
100 km of the MPL station have the highest R2 = 0.90 (RMSE = 7.99 μg/ 

Fig. 7. The scatter plot of ADRN models with point density using data within (a) 50 km, (b) 100 km, (c) 200 km, and (d) 300 km of the MPL station. The black line is 
the 1-to-1 ratio line, and the red line is separate fitting lines between estimated PM2.5 concentration and observed values. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Estimated PM2.5 from 4 machine learning models compared to observed values at AQI stations, using BLH or HLH, respectively.  

With BLH 2017 2018 2019 2020 

Method R2 Mean/bias DJF Other DJF Other DJF Other DJF Other 

AQI  38.68 58.05 39.73 61.16 31.97 62.46 32.59 45.92 30.88 
MLP 0.34 ¡0.14 − 6.37 0.98 − 4.45 1.79 − 4.10 0.47 − 4.56 2.43 
SVR 0.36 ¡2.40 − 8.84 − 1.94 − 11.43 − 1.96 − 8.88 − 1.56 − 7.48 − 0.93 
RF 0.72 0.06 − 1.34 − 0.04 − 0.21 0.19 − 0.37 − 0.02 − 0.20 0.14 
ADRN 0.80 0.12 − 0.98 − 0.05 − 0.26 0.11 − 0.08 0.03 − 0.01 0.28  

With HLH 2017 2018 2019 2020 
Method R2 Mean/bias DJF Other DJF Other DJF Other DJF Other 
AQI  38.68 58.05 39.73 61.16 31.97 62.46 32.59 45.92 30.88 
MLP 0.44 ¡0.11 − 0.84 0.91 − 4.66 0.03 − 3.25 0.43 − 1.82 0.94 
SVR 0.40 ¡2.22 − 4.40 − 1.95 − 7.06 − 1.85 − 5.53 − 1.21 − 4.81 − 1.10 
RF 0.83 ¡0.06 − 0.28 0.15 − 1.23 0.16 − 0.77 0.18 0.09 0.42 
ADRN 0.87 ¡0.01 − 0.18 0.20 − 0.08 0.15 0.39 0.13 − 0.07 0.14  
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m3). Since HLH is inferred from MPL measurements and assumed to be 
spatially uniform in the range of the trained model, k above the feasible 
value might negatively impact the validity of the model. Yet, the ADRN 
achieves competitive performance in PM2.5 estimation up to 300 km, 
with R2 = 0.87 and RMSE = 10.14 μg/m3). 

To prove that using HLH instead of BLH has a positive effect on the 
model results, we performed a comprehensive comparison among PM2.5 
observed at stations and estimated PM2.5 using machine learning models 
including MLP, SVR, RF, and ADRN. The statistics are given in Table.1. 
The results in form of seasonal bar plots are included in Fig.S2. The 

Fig. 8. AOD and PM2.5 concentration from ADRN. Panel (a) shows observed MAIAC AOD (AODL1) while panel (b) shows observed and interpolated AOD (AODL2 
since >20% pixel is available) demonstrated by data on January 14th, 2017. The red circle marks the boundary of the study area. (c) Correlation between all 
available AOD (AODL1-L3) and PM2.5 concentration measured at AQI stations, with and without normalizing by HLH, arranged by distance to MPL station. (d) Same as 
(c) but using observed and partially interpolated AOD (AODL1-L2) only. (e) Same as (c) but using observed AOD (AODL1) only. (f) The number of AQI stations and 
collocated samples averaged by distance to the MPL station. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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comparison shows that all models are improved using HLH instead of 
BLH. The improvement in correlation is most prominent in the RF 
model, and the reduction of bias is most prominent in the ADRN model. 
Note that there might be some sampling bias when comparing mea-
surements at AQI stations to the model results, since the stations are 
unevenly distributed, but the influence is minor in the current study (see 
supplement). 

4. Discussion 

Using HLH to improve regional PM2.5 estimation on an hourly basis 
has important applications in extending spatial and temporal coverage 
of PM2.5 in poorly monitored areas. Fig. 8 demonstrates the feasibility of 
using HLH from a single lidar to improve the accuracy of PM2.5 esti-
mation in the surrounding area, with the aid of AOD imputation. Fig. 8 
(a) presents the spatial availability of MAIAC AOD on January 14th, 
2017, and Fig. 8(b) is the interpolated AOD using ADRN. The missing 
area is due to the water surface, which is excluded from interpolation 
because MAIAC AOD is subject to large uncertainties. Fig. 8(c) presents 
the improvement in estimated PM2.5 for all AOD, while Fig. 8(d-e) only 
uses AODL1-L2 and AODL1 only for higher accuracy. The results are 
averaged by the distance from each AQI station to the MPL station, 
which roughly shows an inverse relationship to the improvement of 
AOD/HLH-PM2.5 estimation. The number of AQI stations and collocated 
samples are shown in Fig. 8(f). For the full dataset, the correlations 
between AODL1-L3 and PM2.5 concentration at individual stations 
improve from R2 = 0.13–0.17 to 0.26–0.41 after normalizing AOD with 
HLH instead of BLH. For AODL1-L2, the correlation improves from R2 =

0.32–0.51 to 0.47–0.73. For AODL1, the correlation improves from R2 =

0.36–0.54 to 0.56–0.74. Comparison between results using AODL1-L2 
and AODL1 only shows that a small increase in data coverage (AODL1 
accounts for 4.96% of total and AODL2 accounts for 8.3%) doesn’t 
significantly impact the model performance. When the distance is larger 
than 125 km, the improvement still exists, but the trend becomes un-
clear, indicating that a single lidar is effective to improve the accuracy of 
PM2.5 estimates up to this range. 

After accommodating non-uniform boundary layer conditions, ac-
curate estimates of hourly PM2.5 can have important applications for 
social issues. As shown in Fig. 9, a case study at 8:00, 12:00, and 17:00, 
on October 12th, 2019 reveals significant changes during daytime sur-
rounding the city. Fig. 9a shows high PM2.5 concentration (51.24 μg/m3) 
in the downtown region (encircled by expressway) accumulated from 
the previous day and along with the major transportation network due 
to morning rush hour. On average, the north wind blows from morning 
to noon at 7.78 mph, and the PM2.5 concentration in the downtown area 
is reduced to 31.24 μg/m3 by noon. The wind keeps blowing in the af-
ternoon, and the downtown region shows very low PM2.5 concentration 
(19.88 μg/m3) at 17:00 before the evening traffic hour, which has 
decreased by ~60% compared with that at 8:00. Large variations in 
PM2.5 concentrations suggest that hourly air quality monitoring, rather 
than daily averages, is important for correctly grading air quality 
warnings. 

Many studies have investigated the relation between PM2.5 exposure 
and human adult life expectancy around the world. The ADRN results 
show that the highest PM2.5 concentration occurs at 9:00 for winter and 
8:00 for other seasons (Table S3). The difference between the morning 

Fig. 9. A case study of estimated hourly PM2.5 concentration on October 12th, 2019. Panel (a) depicts the major transportation network surrounding Hangzhou. 
Panels (b-d) show spatial distributions of estimated hourly PM2.5 concentration with 1-km-resolution at 8:00, 12:00 and 17:00 local time, respectively. 
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concentration peak and average daytime value is 5.35 μg/m3 (the largest 
difference is 7.62 μg/m3 in winter). Based on equations provided in the 
PM2.5-life expectancy studies (Krstic, 2012; Correia et al., 2013; Stieb 
et al., 2015; Chen et al., 2019), this value could equate to 0.19–2.57 
(0.27–2.67 in winter) years of life expectancy change (see equations 
provided in the supplement). 

5. Conclusion 

In order to accurately estimate hourly PM2.5 concentration, we 
proposed the CAPTA method combining the advantage of active and 
passive remote sensing data, and calculated an HLH parameter from 
MPL profiles to take the non-uniform boundary layer and the residual 
layer above into account. Long-term lidar observation shows that due to 
non-uniform boundary layers, about half AOD-based PM2.5 estimates in 
this study can be improved by replacing BLH with HLH as the scaling 
factor. For 90% of measurements at the MPL station, normalizing with 
HLH improves the correlation between AOD and PM2.5 concentration by 
20% (R2 increased from 0.49 to 0.61). On the regional scale, employing 
HLH to the observed MAIAC AOD and interpolated AOD using ADRN 
also leads to improvement in correlation with PM2.5 concentration 
measured at each AQI station. For observed and partially interpolated 
AOD (AODL1 and AODL2, respectively), the correlation improves from 
R2 = 0.32–0.51 to 0.47–0.73. For all available AOD, the correlation 
improves from R2 = 0.13–0.17 to 0.26–0.41. The improvements 
decrease as the distance to MPL increases. Such a trend is most clear in 
the first 125 km, suggesting that a single lidar is feasible to improve the 
accuracy of PM2.5 estimates up this range. 

Trained ADRN models using HLH as one of the input variables 
demonstrate high performance in the independent test. The test R2 is 
0.90 (RMSE = 7.99 μg/m3) within 100 km of MPL and 0.87 within 300 
km (RMSE = 10.14 μg/m3). Estimated PM2.5 concentration at high 
spatial-temporal resolutions is consistent with daytime traffic, one of the 
major sources of urban particulates. PM2.5 estimates from other machine 
learning models also show improvement using HLH instead of BLH. The 
high spatial-temporal variation of PM2.5 indicates that hourly moni-
toring is the key to social health. The average difference between 
morning and daily PM2.5 concentration could equate to 0.19–2.57 years 
of life expectancy change. 

This work demonstrates that the CAPTA method is useful for ac-
commodating non-uniform boundary layer conditions and estimating 
PM2.5 accurately. Ground-based lidar has been shown to be a powerful 
tool for investigating the local pattern of aerosol vertical distribution 
and provides correction coefficients for the PM2.5 calculation. Yet, the 
limited availability of lidar makes it challenging to be employed in 
routine PM2.5 monitoring. The developing deep learning approaches 
provide a helpful technique for combining profiles from ground-based 
lidar and AOD from space-borne instruments on the regional scale. 
Furthermore, we look forward to launching more space-borne lidars or 
establishing a ground-based lidar network to expand the coverage of 
lidar profiles. 
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