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GRAPHICAL ABSTRACT

Glacial airborne bacteria over the Tibetan Plateau
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ABSTRACT

The glacier of the Tibetan Plateau (TP) is influenced by the Indian monsoon and continental westerlies. Wind flow can
carry a variety of bacteria and disperse across the TP. Once these bacteria are colonized to the glacier surface, they
could affect the biogeochemical cycle of the glacial ecosystems. However, very few studies have focused on the rela-
tionships between these airborne bacteria and atmospheric circulation over glaciers of the TP. Here we studied the di-
versity, taxonomic composition, and community structure of airborne bacteria on six TP glaciers using 16S rRNA gene
sequencing. The results revealed an increase in the airborne bacterial diversity over the glaciers under the effect of the
Indian monsoon. Airborne bacteria were dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria,
while relative abundances of Bacteroidetes and Firmicutes were significantly higher under the influence of the Indian
monsoon in the southern and central of the TP, respectively. Moreover, significantly different airborne bacterial com-
munity structures were observed over glaciers under the influence of the Indian monsoon, which could be explained by
the increased community stochasticity. In addition, the Indian monsoon increases the diversity and relative abundance
of potential pathogens, which includes the most notorious bacteria such as Pseudomonas fluorescens, Staphylococcus au-
reus, and Clostridium butyricum. Our results revealed for the first time that atmospheric circulation influences the com-
position of airborne bacteria over the glaciers on the TP, this may provide critical insights into the distinct microbial
community structure and function in glaciers across the TP.
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1. Introduction

Glacier surface hosts abundant and diverse microbes. These microbes
are responsible for the cycling of vital nutrients (Stibal et al., 2012) and
they also have the potential to influence the melting rate of the glacier by
reducing surface albedo (Sommers et al., 2019). In addition, biological pro-
cesses at the glacier surfaces amplify the impacts of climate warming on gla-
ciers (Irvine-Fynn et al., 2012). Thus, microbes are important components
of glacier ecosystems (Edwards et al., 2020). Studies have shown that bio-
logical processes on glacier surfaces are influenced by aerosol deposition
(Stibal et al., 2012), however, the sources of microbial deposition remain
unclear.

Microbes are important components of bioaerosol (Burrows et al.,
2009b). It can be atomized from almost any surface (Smets et al., 2016),
and then be emitted into the atmosphere. Moreover, bacteria can be carried
and dispersed over long distances via wind flow (Maki et al., 2018; Yoo
et al., 2017), which efficiently links microbial communities across conti-
nents, islands, and oceans (Bowers et al., 2009; Frohlich-Nowoisky et al.,
2016). Once deposited on the Earth's surface, these airborne bacteria may
impact the development and succession of microbial communities (Maki
et al., 2011; Stern et al., 2021). This influence is particularly important
for fragile ecosystems like glaciers. Earlier research has demonstrated that
bacteria can be globally transported by wind flow and influences the com-
position of microorganisms in downwind ecosystems (Hervas et al., 2009).
Transpacific wind has been shown to disperse microorganisms across con-
tinents (Smith et al., 2013). This kind of long-range transportation of air-
borne microbial can affect the diversity of Antarctic soils (Archer et al.,
2019). In addition, one study documented that the microbes uplifted during
dust storms can survive long-range transport in the atmosphere and colo-
nize high-altitude snow (Chuvochina et al., 2011). Therefore, airborne bac-
teria can be an important source of the microbes in glacier ecosystem.
Although connections between atmospheric circulation and bacteria trans-
portation have been observed (Romano et al., 2019), these studies primar-
ily focused on a single location or a small geographical scale, the
distribution of airborne bacteria at the regional scale remains elusive.

Tibetan Plateau (TP) possesses the largest area of glaciers outside of the
polar regions (Liu et al., 2017). A diverse microbial community has been
identified on glacier surface, and the microbial biogeochemical cycle has
a great impact on downstream ecosystems through glacial meltwater
(Edwards et al., 2020; Liu et al., 2021). However, the source of glacier sur-
face microbes remain unclear. Nevertheless, aerosol deposition is consid-
ered an important source of microbes on glacier surface. In summer, the
TP is controlled by the Indian monsoon and the westerly (Thompson
et al., 2018; Yao et al., 2012). Many studies have demonstrated that the
monsoon and westerly play important roles in delivering aerosols, includ-
ing black carbon, brown carbon, and organic pollutants (Kang et al.,
2019; Luthi et al., 2015). However, whether there are differences in air-
borne bacteria composition remains unclear. Indian monsoon and
westerly-driven air masses have different sources with distinct ecosystem
types and are likely to carry distinct microbial compositions. Thus, we hy-
pothesize that the Indian monsoon will carry significantly different micro-
bial communities from the westerly. To test this, we collected aerosol
samples over six glaciers of the TP during June to August, and investigated
their airborne bacteria diversity, taxonomic composition, and community
structure.

2. Material methods
2.1. Sampling sites and sample collection

The TP glaciers are controlled by the interplay of the Indian monsoon
and the westerly (Yao et al., 2012). The TP can be roughly divided into
three climate domains, south of 30°N is mainly affected by Indian monsoon,
as the monsoon domain; the north of 35°N is mainly affected by westerly, as
the westerlies domain; while the region between 30°N and 35°N is consid-
ered to be the transition domain, which is under the control of a shifting
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climate between the Indian monsoon and the westerly (Wang et al., 2016;
Yao et al., 2013).

Aerosol samples were collected at six different glaciers on the Tibetan
Plateau (Fig. 1), three of which were located at the monsoon domain
(Parlung No. 4, Qiangyong, and Mengdakangri Glaciers), and the other
three were located at the transition domain (Qingtang No. 1, Dongkemadi,
and Tanggula Glaciers) of the TP (Fig. 1). The Parlung No. 4 Glacier (PL4,
29.26° N, 96.93°E; 4664 m above sea level (m a.s.l)) is nearly 8 km long
and covers an area of about 11.7 km? (Yang et al., 2011). It is located in
the upper Parlung-Zangbu River Basin, southeast TP, where the Indian
monsoon intrudes through the Brahmaputra Valley. The Qiangyong Glacier
(QY, 28.89° N, 90.23° E; 4884 m a.s.l) is located between the Himalayan
ranges and the Yarlung Zangbo River in the southern TP (Tian and Tian,
2019). The length of the QY Glacier is 4.9 km, the maximum width is 2.8
km, and the area is 7.7 km? (Luo et al., 2003). Mengdakangri Glacier
(MDKR, 28.47° N, 90.60° E; 5408 m a.s.l) is located on the mid-eastern sec-
tion of the Himalayas. It is 3.1 km long and covers an area of 2.46 km? (Gao
etal., 2017). PL4, QY, and MDKR glaciers are controlled by the Indian mon-
soon from June to August. Qingtang No. 1 (QT1), Dongkemadi (DKMD),
and Tanggula (TGL) glaciers are located in the transition domain, which
is affected by westerly with strong monsoon event influence in summer.
QT1 glacier (33.17° N, 88.42° E; 5726 m a.s.l) located in the eastern
Qiangtang Plateau of the central Tibetan Plateau, it is a small (2.4 km2) gla-
cier of about 2 km in length. Its climate is influenced by both monsoon and
westerly (Li etal., 2017). DKMD (33.03° N, 92.03° E; 5284 m a.s.]) and TGL
Glacier (33.11° N, 92.03° E; 5255 m a.s.l) are located on the northern slope
of Tanggula Mountain, in the central TP (Zhou et al., 2011). The DKMD gla-
cier is 5.4 km long with an area of 14.63 km? (Zhou et al., 2011), while the
TGL glacier is 2.8 km long, 0.5 to 0.6 km wide with a surface area of 1.7
km?.

Due to weather conditions and logistic limitations, one to four samples
were collected at each glacier. A total of 13 samples were collected during
the 2018 and 2019 monsoon seasons (June—-August) (Table S1). Samples
were collected using pre sterilized polycarbonate filters with a pore size
of 0.2 pm (GTTP04700) and a sterilized Swinnex 47 mm filter holder
(Millipore SX0004700) connected to an air pump (the flow rate was ap-
proximately 2.5 Lmin 1) lasts 48-144 h (Qi et al., 2021). Blank controls
were exposed through a sampler that did not collect air. Samplers were
mounted at the glacial terminus, 1.5 m above the ice. All filters were
transported within 30 h in an insulated container at 4 °C to the Lab in
Lhasa and then were transported frozen to a laboratory in Beijing. After en-
tering the laboratory, the samples were kept frozen at —20 °C for labora-
tory analysis.

2.2. Back-trajectory analysis

A ten-day backward trajectory was computed by using the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and
Global Data Assimilation System meteorological data at 500 m above
ground level and visualized with MeteoInfo (Choufany et al., 2021). This
method has been used to determine the source of air masses, establish the
source-sink relationship, and analyze the geographic source, path, and alti-
tude of aerosol from the ground. In addition, the length of the trajectory in-
dicates the speed of the air mass. The geographic region where air masses
fly at low altitudes within the planetary boundary layer is considered to
be the likely source area of the collected material (Péguilhan et al., 2021).

2.3. DNA extraction, PCR amplification, Illumina sequencing and processing of
Illumina sequencing data

The holders were opened and polycarbonate membranes were removed
in a PC2 certified laboratory. Total DNA was extracted from the 0.2 pm
polycarbonate films by using the UltraClean Soil DNA kit (MoBio, San
Diego, CA) according to the manufacturer's instructions. The V4-V5 region
of the bacterial 16S rRNA genes was amplified in triplicate with the primer
set 515F/907R (515F: 5-GTGCCAGCMGCCGCGG-3’; 907R: 5’-CCGTCA
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Fig. 1. Map showing the ecosystems and the sampled locations. The glaciers sampled include: Parlung No. 4 Glacier (PL4), Qiangyong Glacier (QY), Mengdakangri Glacier
(MDKR), Qingtang No. 1 Glacier (QT1), Dongkemadi Glacier (DKMD) and Tanggula Glacier (TGL) on the Tibetan Plateau. Dashed lines indicate the boundaries of westerly

and monsoon influences (Thompson et al., 2018).

ATTCMTTTRAGTTT-3) (Fang et al., 2017). PCR reactions were performed
in a volume of 50 pl containing 25 pl 2 X Premix Taq (Takara Biotechnol-
ogy, Dalian Co. Ltd., China), 1 pl of each primer (10 mM) and 3 ul DNA
(20 ng/pl) template in a volume of 50 pl. The reaction was carried out by
the thermocycling program: 5 min at 94 °C for initialization; 30 cycles of
30 s denaturation at 94 °C, 30 s annealing at 52 °C, and 30 s extension at
72 °C; followed by 10 min final elongation at 72 °C. Finally, sequencing of
the bacterial 16S rRNA gene clone libraries were performed using an
[llumina MiSeq Sequencer (Illumina, San Diego, CA) with a paired-end
strategy (2 x 250 bp) provided by Guangdong Magigene Biotechnology
Co. Ltd. (Guangzhou, China). Reads created in this study have been
uploaded to the NCBI SRA database (BioProject accession number
PRJNAS808868).

Taxonomic analysis of raw sequences were processed using the Quanti-
tative Insights into Microbial Ecology pipeline (QIIME2; version 2021.04)
(Almeida et al., 2018; Caporaso et al., 2010). In brief, for all sequenced sam-
ple, raw paired-end sequences were imported into Qiime2, the
demultiplexed and quality filtered by q2-demux and DADA2 denoise plugin
(Callahan et al., 2016). The result of high-quality sequences were clustered
as amplicon sequence variants (ASVs) at 99% identity for downstream di-
versity and taxonomic analysis. The taxonomic assignment of the ASVs
was performed against the SILVA v132 as the database (Quast et al.,
2012) using q2-feature-classifier plugin which based on a pre-trained
Naive Bayes classifier on SILVA 99% OTU database (version 138) trimmed
to the V4-V5 regions of the 16S rRNA gene. To standardize the uneven se-
quencing depth, all samples were randomly subsampled to the smallest li-
brary sizes, which is 16,210. After taxonomy had been assigned, non-

bacterial ASVs (such as the chloroplast, mitochondria, archaea, and unclas-
sified) sequences were removed from the subsequent analysis.

2.4. Statistical analyses

The alpha-diversity indices (Shannon and Chaol indices) were calcu-
lated in the R environment. Kruskal-Wallis one way analysis of variance
was used to test for the significance of the differences between different do-
mains. Distance-based community analyses were calculated based on Bray—
Curtis dissimilarities. The beta-diversity statistical analyses were tested
using PERMANOVA (permutational multivariate analysis of variance)
based on Bray-Curtis dissimilarities and 999 permutations (Kusstatscher
et al., 2020). All analyses were carried out using the vegan and ggplot2
(Ginestet, 2011) packages under the R environment (Grunsky, 2002). The
presence of potential pathogens was identified by comparing the 16S
gene sequences against the bacterial pathogens database (Wardeh et al.,
2015) using BLAST (Boratyn et al., 2013). Only ASVs with 100% identical
and 100% coverage were retained.

3. Results
3.1. Sources of air masses on the Tibetan Plateau

Ten-day backward trajectory plots of the air masses of the samples indi-
cated that 13 aerosol samples can be divided into three groups based on air

mass history. PL4_1, QY_1, QY_2, MDKR_1 and MDKR_2 samples were lo-
cated in the monsoon domain (MD), ten-day back trajectories showed
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that air masses were predominately originated from the Indian continent QT1_1, TGL_1 and DKMD_1 samples were located in the transition domain

(Bangladesh, India, and Nepal) and Indian Ocean. These air masses traveled and were affected by monsoon (TDM) at the time of sampling, ten-day back
at a low altitude (500 m) before reaching the sampling sites (Fig. 2A). trajectories showed a similar air mass backtrack history as for MD samples,
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Fig. 2. Ten days backward trajectory at 500 m above the ground level from Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in MD (A), TDM (B) and
TDN (C) samples. Yellow dots indicate the final position (sampled locations) of the backward trajectory, and red dots indicate the start position of the backward trajectory.
The trajectories of different glaciers are shown with different colored. Monsoon domain (MD), Transition domain affected by monsoon (TDM), Transition domain not affected
by monsoon (TDN), Parlung No. 4 Glacier (PL4), Qiangyong Glacier (QY), Mengdakangri Glacier (MDKR), Qingtang No. 1 Glacier (QT1), Dongkemadi Glacier (DKMD) and
Tanggula Glacier (TGL).
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and they were all influenced by the Indian continental and Ocean air
masses before reaching the sampling sites (Fig. 2B). In comparison,
QT1_2, TGL_2, TGL_3, TGL_4 and TGL_5 samples were also located in tran-
sition domain, but were not affected by the monsoon. Instead, the air
masses traveled from west to east at a high altitude (1500-6000 m) over
the Xinjiang Autonomous Region and even over Europe before reaching
the sampling sites (Fig. 2C), therefore were termed transition domain sam-
ples not affected by the monsoon (TDN). Although the backward track of
TGL_4 originated from Nepal, but the air mass traveled was at a high alti-
tude from west to east after entered the Tibetan Plateau, and the ecosystem
it passed through was mostly same with TDN samples, so it was classified as
TDN group (Fig. 2C).

3.2. Bacterial diversity of the aerosol sample over the Tibetan glaciers

There were 3185 ASVs identified across all samples. The Shannon diver-
sity ranged from 5.02 to 7.99 (mean = 6.64) and the Chaol index varied
from 128 to 517 (mean = 260). The Shannon diversity of the MD samples
was similar to the TDM samples (Kruskal-Wallis, P = 0.25). In addition, the
Shannon diversity of both MD and TDM was significantly higher compared
with TDN samples (P = 0.016 and 0.036, Fig. 3). The Chaol index of the
MD samples was similar to the TDM samples (P = 0.14), whereas both
those of MD and TDM samples were significantly higher compared with
TDN samples (P = 0.008 and 0.036, Fig. 3).

3.3. Spatial variation of airborne bacterial taxonomic composition and commu-
nity structure in glaciers over the Tibetan Plateau

Taxonomic analysis at the phylum level revealed that Proteobacteria
(43%), Firmicutes (10%), Bacteroidetes (9%), and Actinobacteria (8%) were
dominant across all samples (Fig. 4). There was no significant difference ob-
served at the phylum level across the MD, TDN, and TDM, except
Bacteroidetes and Firmicutes. The relative abundance of Bacteroidetes was sig-
nificantly higher in MD and TDN samples than in TDM samples (Kruskal-
Wallis, P = 0.036), while that of Firmicutes was significantly higher in
TDM samples than in MD samples (P = 0.036; Fig. S1A). Comparison of
Firmicutes and Bacteroidetes ASVs at the order level showed that
Lactobacillales and Flavobacteriales were responsible for the difference ob-
served (Fig. S1B and C). More specifically, the significant differences
were mainly observed in Lactococcus sp., which accounted for 65% of the
Lactobacillales ASVs. The relative abundance differences of Bacteroidetes
were mainly due to Flavobacteriales, and the dominated species were
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Fig. 4. Relative abundances of bacterial 16S rRNA gene sequences at the phylum
level (relative abundance >2%) in all glacier aerosol samples across MD, TDM
and TDN. Monsoon domain (MD), Transition domain affected by monsoon
(TDM), and Transition domain not affected by monsoon (TDN).

identified to be Flavobacterium sp., which accounted for 70% of the
Flavobacteriales by relative abundance.

Principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity
revealed three clusters of aerosol samples. Cluster I comprised MD samples,
while cluster II and Il comprised transition domain samples under the in-
fluence of monsoon (TDM) and without the influence of monsoon (TDN),
respectively (Fig. 5A). Significantly bacterial community structure differ-
ences were identified across the three groups (PERMANOVA, P = 0.021,
Table S2), while the community similarity between MD and TDM (P =
0.021) samples were higher than those between TDN samples (P = 0.009).

The community assembly of MD samples was dominantly explained by
stochastic processes (64%, Fig. 5B), while the deterministic processes only
explained 34%. In comparison, the community assembly of transition do-
main samples was dominantly explained by deterministic processes (56%
and 68%). However, significant differences were observed between the
TDM and TDN samples. For TDM samples, the stochastic processes ex-
plained 44%, which is significantly higher than the TDN samples (32%,
Fig. 5B).

3.4. Potential pathogens

Potential pathogens were identified by comparing sequences against
the infectious disease database. A total of 23 bacterial ASVs were identified
to be potential pathogens, and they were identified as Pseudomonas
fluorescens, Pantoea agglomerans, Acinetobacter calcoaceticus, Lactobacillus
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Fig. 3. Comparison of bacterial alpha-diversity indices Shannon diversity (A) and Chaol richness (B) indices in MD, TDM and TDN samples. The box stretches from the 25th

percentile to the 75th percentile with medium values marked. Significance is tested using the Kruskal-Wallis test, with P < 0.05 considered significant. *** P < 0.001, ** P <
0.01 and * P < 0.05. Monsoon domain (MD), Transition domain affected by monsoon (TDM), and Transition domain not affected by monsoon (TDN).
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sp., Staphylococcus lugdunensis, Staphylococcus aureus, Moraxella osloensis,
Stenotrophomonas maltophilia, Fusobacterium nucleatum subsp. vincentii, Ba-
cillus thuringiensis, Achromobacter piechaudii, Sphingomonas paucimobilis,
Capnocytophaga sputigena, Aeromonas veronii, Clostridium butyricum. Of the
pathogens detected, 44% were observed in MD samples, an additional
52% were observed in TDM samples, while only 4% were identified in
TDN samples (Table S3). The potential pathogens accounted for 0.7% of
all 16S rRNA gene sequences across all samples, and their relative abun-
dance was similar in MD (4.93%) and TDM samples (5.49%, Kruskal-
Wallis, P = 0.21; Fig. S2), while they were both significantly higher than
those of TDN samples (0.03%, P = 0.002 and P < 0.001, respectively,
Fig. S2).

4. Discussion

4.1. Spatial variations of glacier airborne bacterial diversity in glaciers over the
Tibetan Plateau

In this study, Shannon and Chaol diversity indices in MD samples were
similar to the TDM samples, both of them were significantly higher com-
pared with TDN samples (Fig. 3). Both MD and TDM samples were affected
by the Indian Monsoon, thus this suggests that the Indian monsoon may in-
crease the airborne bacterial diversity. Airborne bacterial diversity is the re-
sult of the influence of air mass sources (Qi et al., 2021; Tang et al., 2018)
and the ecosystems that the air mass moves over (Frohlich-Nowoisky
et al,, 2016). For MD and TDM samples, the airborne bacteria were carried
by the Indian monsoon from the India (Fig. 2A and B). In addition, the
Indian monsoon travels at low altitude before reaching the sampling sites
(Fig. 2A and B), thus it may pick up microbes from the ecosystems on the
path of air mass travels, assisting the dispersal of soil-borne bacteria to gla-
cier environment (Li et al., 2020). Indian monsoon travels over diverse eco-
systems including meadow, shrub, and forest (Fig. 1). The diverse source of
microorganisms can enhance the diversity of microbes carried by the
Indian monsoon.

For TDN samples, the air mass was mainly influenced by the westerly.
The air mass predominately traveled at a high altitude (Fig. 2C). The
drier, harsher atmospheric environment with stronger UV radiation suggest
the airborne microbes could be subjected to a stronger selection process
(Pan et al., 2021), which could greatly limit the diversity of bacterial that
survived. This is similar to the study in the Arctic region, where microor-
ganisms in the Arctic atmosphere were exposed to extremely low

temperatures and hurricane-strength winds, extreme exposure to UV radia-
tion, and extremely low levels of nutrients, resulting in a lower diversity
compared with that in urban areas (Cuthbertson et al., 2017). Moreover,
a study on the Antarctic airborne bacteria suggests that strong selection oc-
curs during atmospheric transport, limiting the airborne microbes input
into the Antarctic continent (Archer et al., 2019). Furthermore, the westerly
mainly travels through simple ecosystems such as deserts and sparse grass-
lands (Figs. 1 and 2C), further limiting the diversity of bacteria dispersed.

4.2. Glacial airborne bacteria community assembly over the Tibetan Plateau

The airborne bacteria samples were grouped into three clusters: MD,
TDM, and TDN (Fig. 5A). MD and TDM samples were more similar com-
pared with TDN samples, which could be attributed to the influence of
the Indian monsoon. The air masses of MD and TDM moved in a similar tra-
jectory from the Indian continent into the Tibetan plateau (Fig. 2A and B).
Thus, these air masses could carry similar microbes from the ecosystems
along the path of air mass (Burrows et al., 2009a; Qi et al., 2021). This
has been evidenced by the Frohlich-Nowoisky et al. (2016) that different
ecosystems can emit distinct airborne microbes. In comparison, TDN sam-
ples were mainly influenced by the westerly air masses, which carry distinct
microorganisms from the Indian monsoon due to the different sources of air
mass and ecosystems they move over (Figs. 1 and 2C). Thus, different atmo-
spheric circulation impacts both the diversity and relative abundance of
aerosol bacteria, which may subsequently impact the microbial ecosystems
on the glacier surface. Furthermore, the sampling time was different for
aerosol samples of TDM and TDN (Table S1). However, the bacterial com-
munities in the aerosol were clustered by the influence of atmospheric cir-
culation, but not by sample time (Fig. 5A). Therefore, this confirms the vital
roles Indian monsoon in shaping the bacterial community structure in aero-
sol over the Tibetan glaciers.

The bacterial community assembly of Indian monsoon domain (MD)
and transition domain (TDN and TDM) samples were dominantly explained
by stochastic and deterministic processes, respectively (Fig. 5B). The high
contribution of determinism to the microbial community in transition do-
main samples could be explained by the longer distance traveled (and
hence the longer retention time in the atmosphere). Microbes in the atmo-
sphere are subjected to strong UV radiation, low temperature and moisture
(Cuthbertson et al., 2017), which greatly increase the selection pressure
(Bottos et al., 2014). This is evidenced by the prolonged exposure to UV ir-
radiation greatly reduces the survival rate of airborne bacteria (Pan et al.,
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2021). The influence of the Indian monsoon increased the influence of
stochasticity in both monsoon domain samples (MD) and transition domain
samples influenced by the monsoon (TDM samples, Fig. 5B). Indian mon-
soon carries a diverse range of bacteria, whose deposition is affected by dis-
persal limitation (Qi et al., 2021), which is typically considered a stochastic
process (Ning et al., 2020). Thus, the random dispersal of bacteria over the
glacier explained the increased stochasticity observed.

4.3. Variation of airborne bacterial taxa and potential bacterial pathogens in gla-
ciers over the Tibetan Plateau

Airborne bacteria were dominated by Proteobacteria, Firmicutes,
Bacteroidetes, and Actinobacteria (Fig. 4). This is consistent with the domi-
nant airborne bacteria identified globally, including the high-elevation
sites (Bowers et al., 2012) and the low troposphere (Bowers et al., 2009;
Gonzélez-Toril et al., 2020; Pearce et al., 2010). In the present study, the
relative abundance of Firmicutes was significantly higher in TDM samples
(Fig. S1A). Firmicutes are probably well adapted to atmospheric life for
their ability to form endospores in low nutrient conditions (Galperin,
2013). Furthermore, they can even multiply in dust particles when nutri-
ents are available (Tang et al., 2018). The difference in Firmicutes relative
abundance was attributed to Lactobacillales (Fig. S1A and C, predominately
Lactococcus sp.). The genus Lactococcus was commonly identified in dairy
products (Bolotin et al., 2001). This is consistent with the intensive pasture
activity in central Tibet (Li et al., 2019).

The relative abundance of Bacteroidetes was significantly higher in MD
samples than in TDM samples, and the differences were mainly attributed
to the Flavobacteriales (Fig. S1A and B), and the dominated species were
identified as Flavobacterium sp. Members of the genus Flavobacterium have
been isolated from a wide range of habitats such as freshwater, river sedi-
ments, seawater, soils, cropland, and glaciers (Dong et al., 2013; Ekwe
and Kim, 2018; McCammon and Bowman, 2000). This is consistent with
the complex ecosystems and frequent human activities in the path of the
Indian monsoon.

The identified bacterial pathogens can affect a diverse range of hosts in-
cluding plants, fish, arthropods, amphibians, birds, mammals, and humans
(Table S3). The relative abundances of potential bacterial pathogens in MD
and TDM samples were similar, and were both significantly higher than
that in TDN samples (Fig. S2). Therefore, the Indian monsoon not only in-
creases airborne bacterial diversity, but also increase the diversity and rel-
ative abundance of potential pathogens, which also includes the most
notorious bacteria such as P. fluorescens (Schwartz et al., 2006), S. aureus
(Myles and Datta, 2012), and C. butyricum (Lee et al., 2008). MD and
TDM samples were both affected by the Indian Monsoon, and the areas af-
fected by the Indian monsoon were more populated than that by the west-
erlies (Rumpf et al., 2017). This could be due to the higher abundance of
pathogenic microbials in urban air than in rural (Nanclares Castaneda
et al., 2020). The higher population and greater density explain the higher
prevalence of airborne pathogens. The dispersal of potential pathogens on
glacier surface could make Tibetan glaciers a reservoir for hazardous bacte-
ria. Snow as a pathogen reservoir has also been demonstrated by the iden-
tification of pathogens in glacier surface snow (Ji et al., 2021). These
potential pathogens could be released into downstream ecosystems through
glacier meltwater, and impact the health of plants, animals, and humans.

5. Conclusion

Our results revealed that the Indian monsoon and westerly carry distinct
bacterial populations and affected the airborne bacteria over the glaciers of
the monsoon and westerly affected domains. These distinct bacteria could
be responsible for the distinct microbial community observed on the glacier
surface, which affects the biogeochemical cycling of elements and impact
the health of downstream ecosystems during glacier melting. Thus, our
study provides novel insights into the establishment and evolution of mi-
crobial ecosystems in Tibetan glaciers.
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